
Style Sheets for HTML

Joe English

November 18, 1994

Contents

1 Introduction 1

2 Properties 2
2.1 Units of Measurement : 2
2.2 Fonts : 4

2.2.1 Font families : 5
2.2.2 Font sizes : 5
2.2.3 Alternate 1: names : 5
2.2.4 Alternate 2: Numbers : 6
2.2.5 Font shapes : 6
2.2.6 Notes on font selection : 7
2.2.7 Suggestions for "cutting corners" : 7
2.2.8 Open questions : 7
2.2.9 Multiple shape specifications : 8
2.2.10 Other schemes : 8
2.2.11 Specifying actual fonts : 8

2.3 Special effects : 9
2.4 Colors : 9
2.5 Alignment and placement : 10
2.6 Separator specifications : 10
2.7 Enumeration rules : 14
2.8 Generated text : 14

3 Structure of stylesheets 14

4 Specifiers 16
4.1 Document-wide properties : 16
4.2 Phrases : 17
4.3 Blocks : 17
4.4 Paragraphs : 18
4.5 Hyperlinks : 18
4.6 Lists : 19
4.7 Inline Displays : 19

1

Style Sheets for HTML 2

4.8 Block Displays : 19
4.9 Headings : 19
4.10 Metainfo : 20
4.11 Divisions : 20
4.12 Floating elements : 20
4.13 Notes : 20

5 Determining style applicability 21
5.1 Lookup based on Generic Identifiers : 21
5.2 Style inheritance : 22
5.3 Context-sensitive processing : 23

5.3.1 Style sets : 23
5.3.2 Context pattern matching : 25

5.4 Specifying styles in the document : 26
5.5 Notes on style qualifiers : 28

6 Linking Stylesheets to the Document 28
6.1 Multiple style sheets : 29
6.2 User preferences : 29

A SGML definitions 30

B Sample stylesheet for HTML 35

C HTML equivalents of style properties 39

D WWW-Arch architectural form definition 39

Abstract

This is version 0.1 of a proposal for a style-sheet mechanism suitable for use on the World-
Wide-Web. It is primarily oriented towards HTML level 2.0, but may be used to support other
SGML document types as well.

This proposal defines a set of style properties, mechanisms for assigning those properties
to document elements, and mechanisms for associating collections of style specifications with
HTML documents. It also includes suggestions for managing users preferences within a browser
and how to resolve user preferences with externally supplied style specifications.

1 Introduction

[[Throughout the document you may find editorial comments like this one. These are notes to myself
reminding me of what needs to get written and other issues that need to be discussed. At this point,
the document consists mostly of editorial comments.]]

A stylesheet is a collection of style specifications prepared by the document author. Stylesheets
are defined as an SGML document type. Stylesheets are stored and transmitted separately from the
HTML document.

November 18, 1994 Version 0.1

Style Sheets for HTML 3

Goals

[[Fill this part in. Some goals: style sheets should not be too much harder to write and parse than
HTML; should provide functions that the WWW provider community has demanded; must be consis-
tent with principles of generalized markup; should be predictable; must support variety of display
devices; should be applicable to non-HTML document types; must be extensible; probably others.]]

Notes on terminology

In this document, the term author refers to a person or program which creates hypertext documents.
A designer is a person who creates stylesheets. A browser is software which displays HTML doc-
uments. A user is the person who uses a browser, and the term reader refers to the combination of
the browser and the user.
Note: For example, under this proposal a designer is able to specify colors but an author is not (un-
less she is also the designer). Browsers should use the indicated colors if possible unless the user
instructs otherwise. In other words, color specifications appear in stylesheets, not in HTML docu-
ments, and whether or not the color specification is honored depends on platform capabilities and
user preferences.
[[Define: applicable, active, relevant.]]
[[Define: source document, style sheet, preference sheet.]]

Platform capabilities

Documents may be displayed on a wide variety of output devices: high-resolution color bitmapped
displays, VT100 terminals, laser printers, speech synthesizers, and many others. The different de-
vices may be classified by individual features:

� Character cell vs. bitmapped. Are inline graphics supported? Can multiple typefaces be dis-
played?

� Interactive vs. static. Can the user interact with the document? (Selecting links, submitting
forms, etc.)

� Paginated vs. continuous scroll. Do “page breaks” make sense? Are there headers and foot-
ers? Should intra-document hyperlinks include a page number?

� Color vs. grayscale vs. monochrome.

� Visual vs. audio.

[[This proposal tries to address browsers of all combinations of capabilities, but speech syn-
thesizers and other non-visual browsers are sorely underrepresented. Any feedback on how
to better support them would be greatly appreciated.]]

[[For static devices like paper, need to print textual locator for anchors (URL in footnote maybe?),
different layout for forms (may want to print a “blank” form to be filled in with pencil, or may want
to print whateve values were interactively selected.)]]

Browsers are free to ignore any properties which they are unable to render, and are in fact en-
couraged to ignore any which would detract from a uniform interface.

November 18, 1994 Version 0.1

Style Sheets for HTML 4

Note: For example, a browser which highlightshypertext anchors by underlining them is encouraged
to ignore any underline specifications in the stylesheet.

2 Properties

2.1 Units of Measurement

Conventional units of measurement like inches, points, and centimeters are not generally applicable
for device-independent display. Specifying dimensions in physical units will not have the same effect
on different output devices: a one-inch left and margin may be rather narrow on A4 paper, but can
use up a good portion of the display real estate on small monitors.

To address this, stylesheets provide various units of measurement which are defined relative to

� The total display size (pcd, nlh)

� The current font (em, en, ex)

� The display resolution (p).

Dimensions are specified as integer decimal numbers followed by an alphabetic suffix indicating
a unit. (In SGML terms, a NUTOKEN). For example, a horizontal space of 75pcd is equal to 3/4 of
the display width.
Question: Should floating point numbers be allowed in dimension specifications?
[[Distinguish between horizontal, vertical, and thickness units?]]
[[Discuss: relative specifications like +10pcd; very useful for things like margins.]]

Font-relative units

The em unit is the typographical “em width”. It is defined by the current font and is typically equal
to the width of a capital letter M. This unit may only be used in horizontal contexts.

The en unit is the typographical “en width”. It is defined by the current font and is typically
equal to one half of an em. This unit may only be used in horizontal contexts.

The ex unit is the typographical “x height”. It is defined by the current font and is typically equal
to the height (from baseline to top) of a lowercase letter x.

The lh unit stands for “line height”. It is defined as the normal distance from baseline to baseline
(including leading) of the current font. For example, if the current font is 10 point Times-Roman with
two points leading, 1lh is equal to 12 points. Vertical contexts only.
[[Discuss leading: since the required leading is highly dependent on the actual font, it is specified
by the reader, not the designer. Designers may however increase the linespacing to get “double-
spacing” etc.]]

Display-relative units

The pcd unit stands for “per cent of display”. The valid range is between 0 and 100 inclusive. When
used in a horizontal context, 1pcd is equal to 1/100th of the total display width; when used in a
vertical context, 1pcd is equal to 1/100th of the total display height.

The display size is defined by the output device:

November 18, 1994 Version 0.1

Style Sheets for HTML 5

� For a GUI br,owser this should be the size of the window used to display the document (not
the total screen size). If the window is resized, a pcd should be adjusted accordingly.

� For hardcopy output, this shouldbe the paper size minus the top, bottom, left and right margins.

� For character-cell terminals, there isn’t much choice.

Note: To take character-cell browsers into consideration, designers should specify indentation and
other horizontal dimensions in even multiples of 5pcd. This corresponds to 5 spaces on an 80-
column terminal.

The nlh unit stands for “normal line height”. It is defined as the normal distance from baseline
to baseline of the normal body font at the normal size.
Note: While 1lh may mean different things at different points in a document, 1nlh always refers
to the same height regardless of the current font.

The p unit is used for fine-resolution spacing and for specifying line thickness. It represents the
finest useful resolution available on the output device.

For bitmapped display devices, 1p should be interpreted as one pixel.
For laser printers, 1p should be interpreted as one point when used as a horizontal or vertical

space. When used to specify line thicknesses, it should be interpreted as something finer, like a de-
cipoint.
Note: The idea is that a 1p thick line should be a “hairline” rule, and vertical space of 1p should be
the smallest amount of space easily visible to the eye.

Physical units

Question: Should physical units like "inches" and "centimeters" be provided as well?
[[Suggest using TeX’s two-letter abbreviations as a standard. Check TeXbook, add list here.]]

Notes on units of measurement

Since some of the units are dependent on the current font, it is important to apply font specifications
first, so that any font-relative width and height specifications are based on the correct font.

Certain naming conventions are used for dimension attributes. Names ending in “skip” refer to
vertical space, “sep” to horizontal space. “thick” is used for line thicknesses, and “width” and
“height” are used for the dimensions of objects.
[[Allow also browser-configured dimensions? E.g., bigskip, medskip, smallskip for vertical space,
bigspc, medspc, smallspc, thickspace, thinspace, for horizontal? Horizontally: thinspace <
thickspace <= 1en/tiny <= smallspc <= 5pcd <= medspc <= 20pcd <= bigspc <= 40pcd]]
[[The units defined here are not sufficient for producing fine typography. Then again, if you’re inter-
ested in fine typography you won’t be using HTML or these stylesheets anyway; provisions for paper
are only included for users who want to get hardcopy for personal use, not to produce publishable
output.]]

2.2 Fonts

Specifying fonts is problematic.

November 18, 1994 Version 0.1

Style Sheets for HTML 6

Font sizes may vary considerably: a 12 point font is small on a 1024x1024 X terminal, but large
on a classic Mac. The only font families that are available on even half of the common platforms
are Times Roman, Helvetica, and Courier; however, if a user has any fonts other than these three
available, she will probably want to use those instead! Designers have no way of knowing what fonts
will be available to the reader, or even what font formats the reader can use. Even if the browser and
server could negotiate on a common font format, say PostScript Type 1 or X BDF, there are serious
copyright implications involved in shipping fonts across the network.
[[I don’t think mechanisms for font downloading are even worth considering at this point, given the
limited number and quality of freely distributable fonts. But see p. 8 where it’s briefly considered
anyway...]]

Consequently, fonts are specified in the style sheet with three parameters:

� A logical font family

� A logical font size

� A font shape

This scheme provides a limited “logical palette” of fonts for designers to choose from, and read-
ers are able to select the actual typefaces and sizes to which the logical fonts map.
Note: It will also be necessary to specify the text encoding and directionality, but these are more
properly properties of the document itself, not just presentation hints. This proposal does not address
these issues, except to say that browsers could use encoding and directionality as extra parameters
to be used in font selection.

2.2.1 Font families

The fontfam style property specifies one of the following logical font families:

normal A text font, used for the main body text.

heading A display font, suitable for headings and figure captions.

fixed A monospaced font, suitable for displaying code listings and other preformatted text.

alternate A second text font, suitable for body copy but visually distinct from the normal font.
Might be a sans-serif font if the main font is roman, or vice-versa.

[[Rename “normal” family to something like “text” or “body”. The word “normal” is overloaded.]]
The set of actual fonts to which each logical font family corresponds is configured by the reader.

Question: Is this scheme totally harebrained, or only partially so?
Note: The rationale behind this particular choice of font families is based on certain observations:
it is fairly common for section headings to use a different font family than the body text, and there
are many cases where having a second text font is useful (e.g., a document with annotations might
display the primary text in the normal family and annotations in the alternate, or a designer
could use alternate for figure captions and sidebars.) The fixed family is necesary to support
preformatted text. Suggestions are welcome. See also p. 7 for other notes.

November 18, 1994 Version 0.1

Style Sheets for HTML 7

2.2.2 Font sizes

The fontsize property specifies a logical font size. As with the font family, the actual size in
points or pixels is determined by the reader.
[[There are two different options. Not sure which one is best.]]

2.2.3 Alternate 1: names

The font size is specified as one of the following name tokens, from smallest to largest:

� tiny

� small

� normalsize

� large

� big

� huge

Note: The names are based on those used in LaTeX. LaTeX actually has a wider range of sizes, since
it distinguishes \large, \Large, and \LARGE. The same scheme could be used for stylesheets,
except that case is not significant in SGML name tokens. (Declaring the fontsize attribute as CDATA
would prevent validating parsers from checking its value.)

2.2.4 Alternate 2: Numbers

The fontsize property is specified as an integer between 0 and 7 inclusive, with 0 being the small-
est, 7 the largest, and 3 the “normal” or default size.
Note: This was taken from Netscape.
Note: The Netscape <BASEFONT> tag – which changes style properties asynchronously with the
document structure – is not supported in this proposal.
Question: For font sizes, which is preferable: numbers or names?
[[I think using numbers is slightly better than names for a couple reasons: it’s less ambiguous (“Is
large larger than big or is big bigger than large?”), it provides a slightly wider range of sizes (I ran
out of adjectives), and it allows for relative font size specifications like <style gis="emph"
fontsize = "+1">.]]
[[Another option is to combine the two: allow large 1 2 3 4, huge 1 2 3 4, small 4 3 2 1, tiny 4 3
2 1 for users who like lots and lots of variation in font sizes. They can configure their browsers to
use them; for a more uniform layout only the names would be used. This may enhance predictability
too.]]

2.2.5 Font shapes

The fontshape property is used to select a variant of the current font family. Legal values are:

plain The “normal” or default typeface for this family (Times Roman, Computer Modern Roman).

November 18, 1994 Version 0.1

Style Sheets for HTML 8

bf A heavier variant of the plain font (Times Bold, Computer Modern Bold Extended).

it An italic, oblique, or slanted variant of the plain font (Times Italic, Helvetica Oblique).

bi A heavier variant of the italic family (Times Bold Italic, Helvetica Bold Oblique).

sc A caps-and-small-caps variant of the plain font. (Computer Modern Small Caps).

tt A “teletype” or “computer” style font; probably taken from a different actual font family than the
plain face, but should be chosen to be visually compatible with it (Courier, Lucida Teletype).

Note: Character cell browsers may use terminal emphasis to emulate font shapes; for example,
“bright” or “standout” mode for boldface and underlining in place of italics. Reverse video is not
recommended for this purpose.
Note: Inventive browsers may choose to fake the sc variant by using the capital alphabet from a
single typeface at two point sizes. This is not generally recommended for print, but it should look
OK on low-resolution bitmapped displays. Another option is to simply use the plain variant and
fold lowercase letters to uppercase.
Question: Is the sc variant even necessary? It looks good for headings, and may be useful for trade-
marks, but it probably isn’t vital.
Note: Unlike the fixed family, the tt variant need not be a fixed-width font.

2.2.6 Notes on font selection

The only requirements for browsers concerning font selection is that they must provide at least one
variant of the fixed family, and that all fixed variants must be monospaced. This is to support
the HTML PRE element and other constructs where character spacing is critical to the meaning of
the document content. If all variants in the fixed family have identical metrics, even better, but de-
signers should be aware this is not necessarily the case (e.g., text in<style fontfam = fixed
fontshape = bf> might not align with text in <style fontfam = fixed fontshape
= it>.)

It is suggested that family and size changes only be applied to block-level elements like headings
and paragraphs; shape specifications (and colors and special effects) may be applied anywhere. This
suggestion is primarily for designers, though it would be reasonable for browsers to enforce it by
ignoring family and size changes on phrase-level elements.
[[I had a rationale for saying this, but I’ve forgotten what it was. Unless it was just that “inline point
size changes are ugly”, in which case ignore the last paragraph.]]

2.2.7 Suggestions for "cutting corners"

Readers need not provide a unique typeface for every combination of family, shape, and size. This
is in fact desirable, since there are a large number of combinations and loading lots of fonts can be
resource-intensive.

Some suggestions for limiting the number of actual fonts used are listed here.

� Can use the same set of fonts for the alternate and heading families;

� Can use the same set of fonts for the alternate and normal families;

November 18, 1994 Version 0.1

Style Sheets for HTML 9

� Can use the same set of fonts for all three of alternate, heading, and normal. This
help prevent “spreading fonts across the page like peanut butter”

[[Attributiondammit?]]

� Can use the fixed family in place of the tt shape for all other families.

� Can provide three sizes instead of six or eight, mapping 0-2 to “small”, 3 to “medium” and 4-7
to “large”. (Or 4-5 to “large” and 6-7 to “huge”.)

� Need not provide small sizes for the heading family;

� Need not provide anything other than normalsize for alternate and fixed families.

� Browsers should provide all sizes for thenormal family, in case designers wish to use a single
font family for all elements.

2.2.8 Open questions

In some respects, the overall approach specified here is too limiting (“I want my ransom note to dis-
play just like I wrote it!”), and in other respects there are too many choices. I think that four logical
families strikes a good balance between flexibility for authors and configurability for readers, but
suggestions are welcome.

This section lists some of the open questions and alternatives to consider.

2.2.9 Multiple shape specifications

Question: Should shape specifications be cumulative?
Some authors may expect bold and italic specifications to have a cumulative effect, i.e., that an

“italic” phrase inside “bold” text should be rendered in “bold italic.”
[[The utility of this has always puzzled me, but every Mac program, desktop publishing application,
and even LaTeX2e seem to think that font selection should work like that. I think the notion that you
can do arithmetic with fonts that way is misleading: Times Bold Italic is not just Times Roman plus
bold plus italic.]]

If shape specifications accumulate, this can lead to a combinatorial explosion of different type-
faces. Not all the combinations will be available (or even make sense! Bold italic small caps?).
The interaction between cumulative shape specifications, font availability, and the other inheritance
mechanisms proposed here will be very hard to predict.
[[I’ve had problems with NFSS along the same lines.]]
[[I’m inclined to say that font shapes should not be cumulative, but I do have some ideas for how a
priority scheme could work in case the majority feel this is a good idea.]]

2.2.10 Other schemes

Question: Would further decomposition of the fontshape parameter be useful?
For example, could take the NFSS approach and specify series and shape as separate parameters.
Could further decompose into weight, width, and slant, a la [8] and several others.

November 18, 1994 Version 0.1

Style Sheets for HTML 10

Could come up with a comprehensive list of logical font properties (serif vs. sans, roman vs.
transitional vs. modern, upright vs. oblique, large x height vs. small x height, and so on) and have
browsers pick the best match based on available fonts.
[[Need to check out Panose system. Sounds like it does this sort of thing.]]

2.2.11 Specifying actual fonts

[[It is my opinion that any font selection scheme that does not leave the final choice of fonts solely
to the browser and user is doomed to failure. Nevertheless...]]

Could add a FONTDESC element, which would specify an actual font to be used for a particular
logical font. It would contain multiple FONTSPEC elements, one for each known platform and/or
font format:

<fontdesc fontfam=normal fontsize=normal fontshape=it>
<fontspec notation=XLFD>

-adobe-times-medium-r-normal--*-120-*-*-*-*-iso8859-1
</fontspec>
<fontspec notation=postscript>

/Times-Roman findfont 12 scalefont
</fontspec>
<fontspec notation=TeX>

cmr10 at 12pt
</fontspec>
<fontspec notation=NFSS>

cmr/m/n/12/14
</fontspec>
<fontspec notation=MSWindowsFont>

???
</fontspec>
<fontspec notation=MacintoshFont>

???

</fontdesc>

This would quickly get painful, since there would need to be a different FONTDESC for every
combination of family and style used in the stylesheet.

The size parameter could be factored out into a separate mapping from logical sizes to actual point
sizes and leading. Factoring out any other attributes will be difficult, since although some schemes
support it – NFSS and partially XLFD – others do not at all (TeX and PostScript).

Could let designers specify new sets of logical font families. This would leave browsers that
didn’t grok the font notation with no fallback though.

2.3 Special effects

[[Various options: undlerline, strikethrough, blinking (what the hell), reversed type, boxed, others.
See DTD.]]

November 18, 1994 Version 0.1

Style Sheets for HTML 11

2.4 Colors

All the colors used by a style sheet must be declared in the (optional) COLORS element. This ele-
ment contains one or more COLOR elements, each of which specifies a single color.

COLOR elements have two required attributes: ID, a unique identifier, and RGB, which defines
the color. Colors are referenced by ID.

Colors are defined by their red, green, and blue components using the X11 hex notation: a pound
sign followed by 3, 6, 9 or 12 hexadecimal digits. The digits are interpreted as three groups of 1, 2,
3 or 4 half-bytes, the first specifying the red component, the second green, and the third blue. Hex
digits A through F may be upper or lower case.

<stylesheet>
<!-- Example of color specifications -->
<colors>

<color id=red rgb="#F00">
<color id=green rgb="#00FF00">
<color id=blue rgb="#000000000FFFFF">
<color id=grey rgb="#c0c0c0">
<color id=white rgb="#FFFFFF">

</colors>

<!-- Highlight all code sections in blue: -->
<style gis = "code kbd pre" fgcolor=blue>
</style>

<!-- Headings in red on grey, for whatever unholy reason: -->
<style gis = "h1 h2 h3 h4 h5 h6" fgcolor=red bgcolor=grey>
</style>

</stylesheet>

Note: Under this scheme, all the colors used by a stylesheet are listed in one place, so browsers can
do colormap allocation up front if necessary. This also makes it easier to modify color specifications
if the designer (or the user!) doesn’t like them.
Question: Is there a better notation for RGB than the hex notation?

Three comma-separated decimal numbers from 0-255 maybe?
Question: What’s a better way (better than RGB) to specify colors?
Note: RGB values are probably not be the best way to specify colors. Any color-capable implemen-
tation should be able to interpret them, but not with identical results on all platforms.
[[HSV? YUV? Pantone numbers? TekCMS? A predefined set of color names? (This may be hard to
come by: even the supposedly standard X11 color database does not define the same set of names
from platform to platform.) Should a gamma correction be included? Suggestions are welcome.]]
Note: It will be possible to include multiple attributes on COLOR elements, one for each color spec-
ification scheme. Browsers would use whichever specification format they understood, falling back
on the RGB attribute (which would still be required) if none of the others are understood.

November 18, 1994 Version 0.1

Style Sheets for HTML 12

2.5 Alignment and placement

[[The usual: ALIGN attribute, can be left, center, or right.]]
[[Discuss: perhaps start and end would be better names than left and right, since HTML
will not always be exclusively ISO Latin 1 left to right. Then again, left, center, and right are pretty
deeply ingrained in the collective unconscious.]]
[[Discuss: difference between alignment and placement; center alignment specified on block-level
elements should affect line placement on contained paragraphs, but not in contained display ele-
ments like PRE and TABLE (or should it?); these should be centered as a unit instead.]]
[[Discuss: how HTML 3 alignment attributes fit into this scheme (discussed elsewhere actually);
how Netscape’s CENTER element fits in.]]
Note: HTML 3 proposesJUSTIFY andINDENT as possible of ALIGN attributevalues. Since these
options are orthogonal to alignment, they are specified on separate attributes in the stylesheet DTD.
Note: The HTML DTD specifies TOP, MIDDLE, and BOTTOM as options to the ALIGN attribute
on IMG elements. In the stylesheet DTD, ALIGN is only used for horizontal alignment. Vertical
alignment – top, middle, and bottom – is specified on the VALIGN attribute.

2.6 Separator specifications

A separator is defined here as any formatting construct that separates what comes before with what
comes next.
[[Duh.]]

Separators may be explicit, such as an HTML BR or HR element, or implicit, such as before and
after block-level displays like headings, addresses, and forms. Visually, separators can take many
forms: vertical whitespace, horizontal rules, inlined graphic images like that stupid Kilroy GIF, or
any combination of the above. For example, some user manuals have a thick rule, a few points of
whitespace, a thin rule, and an inch or so of whitespace before each chapter heading.

There are too many combinations to specify using a fixed set of attributes, so the style sheet DTD
includes a SEPSPEC element for defining more complex separators.

SEPSPEC elements have an ID attribute, a unique identifier by which they are referenced. They
may contain any number of HRULE, VSPACE, and IMAGE elements. (These roughly correspond
to the HTML HR, BR, and IMG elements, but are given different names to avoid confusion, since
they have slightly different attributes.
[[Or perhaps to introduce confusion. I’m not sure.]]
Question: Should the HTML names HR, BR, and IMG be used instead of HRULE, VSPACE, and
IMAGE?

<stylesheet>

<note>
Display a page-wide a thick rule and a hairline rule
followed by 4 lines of whitespace before each chapter heading.
</note>

<sepspec id=chapsep>
<hrule thick = 3p width = 100pcd align = center>

November 18, 1994 Version 0.1

Style Sheets for HTML 13

<vspace vskip = 3p>
<hrule thick = 1p width = 100pcd align = center>
<vspace vskip = 4nlh>

</sepspec>
<style

gis = "h1"
fgcolor = blue
presep = chapsep
postskip = 3nlh

>
</style>
<note>
Since the only separator needed *after* the
chapter heading is 3nlh of whitespace,
that is specified on a source attribute (postskip);
SEPSPEC elements aren’t needed for simple
cases like this.
</note>
</stylesheet>

Each of these elements and their attributes are defined below.
Note: The SEPSPEC scheme adds complexity, and doesn’t do much that can’t already be done in
(Netscape) HTML. However, it may make document creation and maintenance easier and may help
to keep information-free tags out of source documents.

Vertical whitespace

The VSPACE element is used to specify vertical whitespace in a separator. It has one attribute,
VSKIP, which is a vertical dimension defining the amount of space to insert.

Rules

The HRULE element specifies a horizontal rule. It has several attributes:

width The width of the rule. Horizontal dimension.

align How to place the rule if it is narrower than the display width. Legal values are left,center,
and right.

thick The rule thickness. Default value is 1p, i.e., a hairline rule. If a value is given for thick, it
should be in p units.

[[Netscape uses SIZE for this attribute. “Thick” is more descriptive, I think.]]

fgcolor The foreground color of the rule. If present, must be the ID of a COLOR element defined
in the stylesheet.

[[May need other attributes. A common presentation style is a Motif-style “3-D” effect with top and
bottom “shadows”; maybe need a shading attribute with legal values etchedin, etchedout,

November 18, 1994 Version 0.1

Style Sheets for HTML 14

and solid. Probably should not specify top and bottom shadow colors, as these are best computed
by the browser from the foreground color.]]

Inline images

[[Move this section elsewhere, as it applies to more than just separators.]]
The IMAGE element defines a bitmapped image which may be used as an icon, bullet, dinbat,

or rule.
[[Is “dingbat” a technical term?]]

IMAGE has the following attributes:

URL A Uniform Resource Locator specifying where to retrieve the image. If this is a relative URL,
it should be interpreted relative to the URL of the stylesheet, not the base document.

ID An optional unique identifier

REFID If present, specifies the ID of another IMAGE element in the stylesheet. This allows images
to be conveniently reused.

[[Ought to specify the different image formats that are allowed, but since HTML doesn’t we don’t
either. In practice, only image/gif is universally supported, and that’s probably the best format
for rules and dingbats anyway.]]

When used as a vertical separator, the following IMAGE attributes are also used:

align Defines how the image should be placed on the page. May be one of left, center, or
right.

[[Someone somewhere sometime posted a set of proposed attributes for the HTML IMG element for
when images were used as rules. It defined options like how the image should be truncated if it was
too wide, if it should be centered or tiled if it was too narrow, and a couple others. I cannot for the
life of me find this posting in any of my archives. Anyone remember this? Anyway, something similar
should go here.]]

IMAGE elements may appear outside any other elements in the stylesheet. They may be used
inside SEPSPEC separator specifications, or referenced by ID on STYLE elements as, e.g., bullets
to use for list items.

<stylesheet>

<image id = kilroy
url = "http://www.art.com/bitmaps/stupid-kilroy-gif.gif">

<image id = rainbow
url = "http://www.art.com/bitmaps/stupid-rainbow-gif.gif">

<image id = blueball
url = "http://www.art.com/bitmaps/blueball.gif">

<note>Use "Kilroy was here" picture for all HRs</note>
<style gis = "hr"

November 18, 1994 Version 0.1

Style Sheets for HTML 15

icon = kilroy
preskip = 2p
postskip = 2p

>
</style>

<note>Use rainbow line after all 1st-level headings</note>
<sepspec id = h1sep>

<vspace vskip = 2p>
<image refid = rainbow>
<vspace vskip = 2p

</sepspec>
<style gis = h1 postsep = h1sep>
</style>

<note>Blue balls for bullets</note>
<style context = "ul li"

icon = blueball
>
</style>

</stylesheet>

[[Need different properties for rule icons and bullet icons? “icon” is used in two places.]]

2.7 Enumeration rules

[[Basic stuff for OLs: numstyle attribute with legal values arabic, lcroman, ucroman,
lcalpha and ucalpha.]]
[[Netscape uses 1, i, I, a, and A to mean the same things, but that means it can’t be validated by an
SGML parser. They also use the TYPE attribute, which is already used for INPUT with a different
meaning; trying to avoid overloading names too heavily in this proposal.]]
[[Could also add more complex ENUMSPEC specifications to allow stuff like Section 2.2 and
Figure (2.2a) to be automatically generated. Check out FOSIs and DSSSL for ideas...]]

2.8 Generated text

[[This is text that’s automatically inserted for phrase-level elements and a few others. May not even
be necessary, but would be nice. Example: Lynx used to put asterisks around STRONG text and
underlines around EMPH, like the Usenet conventions. Personally, I liked that a lot better than what
it does now.]]
[[Include: prefix, suffix text.]]
[[Maybe include before and after text also. (distinction: prefix and suffix text displayed in the same
style as the element; before and after text displayed the same as the containing element.)]]
[[Maybe maybe include: “message text” for graphical browsers; a short message that could be dis-
played on the status line whenever the pointer waves over an element. Useful on anchors, possibly

November 18, 1994 Version 0.1

Style Sheets for HTML 16

on other semantic elements.]]

3 Structure of stylesheets

The format of stylesheets are formally defined in SGML by the stylesheet document type definition.
This DTD requires an SGML declaration with an increased NAMELEN parameter, such as the the
SGML declaration for HTML.
[[Oops! This one won’t work – it needs a vastly increased ATTCNT also. Default is 40, too small.
Time to reorganize the DTD...]]

Typical stylesheets will look like

<!doctype stylesheet PUBLIC -//ART.COM//DTD Style Sheet//EN//DRAFT>
<stylesheet>
<note>
ednote: put more complex example here.
</note>
</stylesheet>

Question: Can I borrow an owner identifier prefix for the FPI? -//IETF// maybe?
Note: If acceptable, the FPI for the style sheet DTD will be something like-//IETF//DTD HTML
Style Sheet//EN

Stylesheets consist chiefly of STYLE elements. Most of the style processing is specified by at-
tributes of STYLE elements.

There are two major categories of STYLE element attributes:

qualifiers which are used to determine when the style element is applicable, and

specifiers which define the properties to be applied to the document when it is.

Processing model

When a browser encounters a start-tag in the source document, it looks up a single STYLE element in
the style sheet, determined by qualifier attributes. Each specifier attribute found on the style element
is used to modify a style property. There is a one-to-one correspondence between specifier attributes
and style properties. If no specifier is found on the STYLE element for any property, the value of
that property is inherited from the parent element.

When an element ends (by an explicit or implied end-tag), all style properties revert to their pre-
vious values (i.e., those of the parent element).
Note: Browsers should maintain a stack of style properties that is pushed and popped in parallel with
the stack of open document elements.
Note: Not all properties are inherited by default. For example, a separator specification for a FORM
element (which may specify, for example, that a horizontal rule should be drawn before and after the
form) would not be inherited by children of the form. That a property should not be inherited is
indicated in the stylesheet DTD by an attribute with a non-#IMPLIED default value.
[[This won’t work. SEPSPEC elements are referenced by IDREF attributes, which can’t be de-
faulted in the DTD.]]
[[If no style element is found, may need to resolve to an artificial empty <STYLE> tag to override
non-inheritable properties.]]

November 18, 1994 Version 0.1

Style Sheets for HTML 17

Other elements

Other elements such as COLORS, IMAGE, and SEPSPEC may appear in the stylesheet to define
properties that are too complex to be specified on a single attribute. These are described in detail
elsewhere.

The NOTE element may appear just about anywhere; it’s for including human-readable com-
ments in the stylesheet. This may only contain plain text (#PCDATA).
Note: No HTML markup is allowed inside NOTE elements.

STYLE element content

Question: What should the content model for STYLE elements be, and what should it mean?
All of the important information is currently stored on attributes. Since all intra-stylesheet linking

is through id references, the semantics of including other elements inside STYLE elements another
is not yet defined.

There are several possible meanings for the STYLE element’s content model:

Inheritance All STYLE elements contained in another automatically inherit properties from the
parent.

Qualification Elements contained in a STYLE element are only applicable when the outer element
is active. (That is, the content of a STYLE element is an implicit style set.)

Specification Elements like SEPSPECs and IMAGEs inside STYLE elements could be used to
specify properties. The contained elements would have a PROPERTY attribute which names
the property they specify (e.g., <SEPSPEC property=postsep ...>).

Illegal STYLE elements could just be declared EMPTY. This might be the best option, since it’s
really easy to forget the </style> end-tag.

[[Currently leaning towards using containment for specification. This seems the most useful. It may
also be necessary to partition style properties into smaller groups and use a different element for
each group, since the number of attributes is quite large; then a STYLE element could contain, say,
a PARSTYLE, a BLOCKSTYLE, and a CHARSTYLE, each of which would specify a set of prop-
erties.]]

4 Specifiers

This section describes all the style attributes applicable to each HTML element. Rather than list each
HTML element individually, they are grouped into “classes” or “architectural forms”. For example,
the HTML elements H1 through H6 all have the architectural form heading, and all use the same
style attributes.

The complete list of architectural forms used in this proposal are semi-formally defined by the
WWW-Arch meta-DTD.
[[Even if the rest of this proposal turns out to be worthless, the WWW-Arch DTD might be useful on
its own. If it ever gets finished.]]

November 18, 1994 Version 0.1

Style Sheets for HTML 18

[[Discuss: various “format” properties, which can affect what other specifiers are applicable. E.g.,
if a heading has headfmt = display the block-level attributes apply; if it has headfmt =
runin then the paragraph attributes do.]]
[[Discuss: “fallback” values; suggestions for defaults if a browser does not support a property to
enhance predictability.]]
[[Discuss: Even if a style specification is is not relevant to an element, it should still be applied to
the current property set, as it may be relevant to contained elements.]]

4.1 Document-wide properties

To specify initial or global stype properties, designers may use a STYLE element applicable to the
HTML or BODY element. Properties specified there will be inherited by all other document ele-
ments.
Note: Even if the source document does not contain explicit <HTML> or <BODY> tags, browsers
will imply their presence since they are contextually required in the HTML DTD.

<stylesheet>

<style gis = body
fontfam = normal
fontsize = normalsize
fontshape = plain

lmargin = 5pcd
rmargin = 5pcd

parindent = 2em
parskip = 1lh

>
</style>
</stylesheet>

4.2 Phrases

All the HTML “highlighting” or “phrase-level” elements. They may contain text, links, inline im-
ages, and other phrase-level elements; they may appear inside paragraph-level elements, headings,
list items, and links. (And, in “non-strict” HTML, at block level as well. In other words, just about
anywhere.)

HTML elements: b cite code em i kbd samp strong tt var .
The following style specifiers are applicable to phrases:

Font properties The font specification properties fontfam, fontsize, and fontshape. See 2.2.

Special effects Various special effects like underlining and strikethrough. See 2.3.

fgcolor The foreground color. See 2.4.

November 18, 1994 Version 0.1

Style Sheets for HTML 19

[[There are a bunch of others, I’m sure. Can’t think of them right now.]]
The background color may only be changed on block-level elements.

Question: Should it be possible to specify the background color as well as the foreground color for
phrase-level elements? How should this be rendered?

4.3 Blocks

HTML elements: address? blockquote
[[Also the proposed HTML 3.0 FIGURE, others?]]
[[Are ADDRESS and BLOCKQUOTE different forms? Blockquote allows block content in strict
DTD; ADDRESS only allows text content.]]

Attributes

lmargin The left margin. A relative horizontal dimension.

rmargin The right margin. A relative horizontal dimension.

bg The background color for this block. Must be the ID of a COLOR element defined in the
stylesheet. See 2.4.

preskip Amount of vertical whitespace to insert before the element. A vertical dimension.

postskip Amout of vertical whitespace to insert after the elemnt. A vertical dimension.

presep The ID of a SEPSPEC element defined in the stylesheet; this separator should be displayed
before the element. If presep is specified, then preskip should be ignored.

postsep Same as presep except inserted after the element.

[[Need to add block-level special effects like frame styles etc. Maybe include Motif-likeshadow styles
for “boxes”? Boxed block elements need to specify inner and outer margins, placement (left, center,
right); should text flow around them?]]
Note: The presep and postsep separator specifications should be formatted using the style proper-
ties defined for the block element. For example, if a STYLE for a block-level element specifies a
foreground color and a SEPSPEC which includes a horizontal rule (see example on p. 11), the rule
should be displayed in the specified foreground color just like the other block contents.
Note: Browsers may add an extra “outer margin” around the display. For graphical browsers this
could be a few pixels; for hardcopy it may be an inch or so. Note that the outer margin is not included
in the total display area, so for example a width of 100pcd on 8.5 by 11 paper would be 6.5 inches,
not 8.5, if there were 1-inch outer margins.

4.4 Paragraphs

The paragraph class is the basic unit of formatting. Paragraphs may contain text, phrase-level
elements, inline displays, and some block-level elements like lists.

HTML elements: dd li p
Note: Note that the list elements LI and DD are treated just like paragraphs for formatting purposes.

November 18, 1994 Version 0.1

Style Sheets for HTML 20

Style attributes

All attributes relevant to blocks, plus the following:

align Line justification. See 2.5.

parindent Horizontal dimension. Specifies the first-line indentation.

[[margins, space before, space after; get list from DTD.]]

4.5 Hyperlinks

[[HTML A, HyTime clink. The HTML LINK element is metainfo, not hyperlink.]]
[[Currently trying to decide whether it should even be legal to specify styles for anchors. This is one
area where consistency across documents is of the utmost importance. Then again, providers might
want to specify it anyway, and users might not mind. This might be best left to browser implementors
and users to decide.]]
[[Possibilities: the usual special effects: underlined, boxed, colors, fonts and so on. Other options:
marginal icons, addition to a “links” menu, others?]]

4.6 Lists

HTML elements: dir dl menu ol ul
There are two different classes of lists in HTML: single-part lists like OL and UL and two-part

lists like DL.
Each entry in a two-part list contains zero or more “term” parts (the DT element) and zero or

more “definition” parts (DD).
Single-part lists may be thought of as a special case of two-part lists, where the “definition” part

is taken from of the list item (LI) element and the “term” part is automaticallyy generated by the
browser (e.g., a number for OL elements, a bullet for ULs, or nothing for MENU).

Further, the “term” part is conceptually very similar to a heading, and the “definition” part is just
likk a paragraph. This is exactly how this proposal treats all lists: a list contains a sequence of
headings and paragraphs, where the headings may be automatically generated.

4.7 Inline Displays

HTML elements: img input

4.8 Block Displays

HTML elements: option pre textarea
[[For display and inline forms, need subsidiary attribute describing the type of display. This is
application-specific (e.g., IMG, TABLE, MATH, etc.) but must have one reserved value (TEXT?)
indicating that the contents are also formattable text. Ditto for float form.]]

November 18, 1994 Version 0.1

Style Sheets for HTML 21

4.9 Headings

HTML elements: dt h1 h2 h3 h4 h5 h6 .
Note: The list element DT is treated as a special kind of heading for formatting purposes.

Style attributes

The headfmt property determines the overall appearance of the heading. Valid options are:

display The heading should be formatted as a block by itself. This is the default behaviour for
most current browsers. If this form is used, all the attributes relevant to blocks are also relevant.

runin The heading should be flowed into the following text. If this form is used, all the attributes
relevant to paragraphs are also relevant.

margin The heading should be placed in the left margin next to the following text.

.

. Example of If ’headfmt’ is specified as ’margin’,

. marginal browsers should produce a display that

. heading looks something like this. Note that

. the heading itself may wrap. Different

. alignment options are available, so the

. heading may be right, left, or center

. justified. Designers who use this

. option should be sure to leave plenty

. of space in the left margin!

.

[[I’ve undoubtedly missed some. Any other options?]]
Note: If the next element after a runin heading is a paragraph, the heading should be interpreted
as having appeared inside the paragraph element.
[[List which properties should be taken from the heading and which from the para when format-
ting the paragraph as a whole. (space before, paragraph indent from heading, others from para-
graph?)]]
Note: If a runin heading is not followed by a paragraph or text, (e.g., a block) it should be formatted
as a standalone paragraph.

4.10 Metainfo

Metainfo elements are those which contain auxilliary data about the document which should not be
displayed in the main document. By definition, no formatting styles are applicable to metainfo ele-
ments.

HTML elements: base isindex link meta nextid title .

November 18, 1994 Version 0.1

Style Sheets for HTML 22

4.11 Divisions

HTML elements: body form head html select
[[Need separate section/division (Hierarchical vs. ContainingDivision as in InfoMaster)? Bert Bos
suggested something similar; probably worth doing.]]

4.12 Floating elements

[[“Floating” element is one that is not displayed at the point it appears in the document; No current
HTML elements, but HTML+ MARGIN and FOOTNOTE would work this way.]]

4.13 Notes

There are still many missing items.

Multiple columns

Question: Should multiple columns be specifiable?
Multi-column formatting has been omitted, although many people seem to want this capability.

[[It doesn’t seem like an appropriate formatting option for online browsing to me, since it will force
the user to keep scrolling up and down if the display is not high enough to fit all the text.]]

The number of columns, gutter width, vertical separators, et cetera, could be specified for block-
level elements and/or the document element. HTML would really need a division or section element
for this to be fully effective.

Scrolling browsers might be encouraged to ignore this directive.

Tables

[[Special concerns for tables: many proposed HTML table formats include a great deal of presenta-
tion information in attributes on the table elements themselves, like borders, column widths, etc. Ta-
bles by their nature are usually marked up with in a presentation-oriented fashion; need to reconcile
that information with stylesheet information. Math will probably present similar incompatibilities.
For now, much like HyTime’s NOTLOC and SGML’s NOTATION features, we punt and call math
and tables “external” elements which must be formatted by their own rules...]]

Forms

[[This still requires more work. HTML forms are pretty badly broken. May have to punt here too...]]

5 Determining style applicability

The rules for resolving style element applicability are given below.

November 18, 1994 Version 0.1

Style Sheets for HTML 23

5.1 Lookup based on Generic Identifiers

Each STYLE attribute has an optional GIS attribute, which is a list of generic identifiers (element
names) to which the style applies.

When the browser encounters a start-tag in the source document, it looks for that elements generic
identifier in the GIS attribute of all active STYLE elements.
[[What if more than one style element matches? Need to specify priority scheme, or make it an er-
ror.]]

<stylesheet>
<!-- First-level headings (H1) centered, large, boldface

Second-level slightly smaller, flush-right.
Third- and fourth- smaller still,
and H5 and H6 same as the text size.

-->
<style

gis = "h1"
fontfam = heading
fontshape = bf
fontsize = huge
align = center

></style>
<style

gis = "h2"
fontfam = heading
fontshape = bf
fontsize = large
align = right

></style>
<style

gis = "h3 h4"
fontfam = heading
fontshape = bf
fontsize = normalsize
align = right

></style>
<style

gis = "h5 h6"
fontfam = heading
fontshape = plain
fontsize = normalsize
align = right

></style>
</stylesheet>

November 18, 1994 Version 0.1

Style Sheets for HTML 24

5.2 Style inheritance

As is apparent from the previous example, writing a complete style sheet can quickly become un-
manageable. A mechanism for style inheritance is also defined.

Each STYLE element has an optional ID attribute, which is an identifier unique to the style sheet.
The optional INHERIT attribute names another STYLE element in the same stylesheet; any prop-
erties not specified on a <STYLE> element are taken from the element named by the INHERIT
attribute.

An inherited style element may in turn inherit properties from another style, and so on. Inheri-
tance chains must be acyclic.

<stylesheet>
<style id=headings

fontfam = heading
fontshape = bf
align = right

></style>

<style
gis="h1" inherit=headings
fontsize=huge align=center>

</style>
<style

gis="h2" inherit=headings
fontsize=large>

</style>
<style

gis = "h3 h4" inherit=headings
fontsize=normalsize>

</style>
<style

gis = "h5 h6" inherit=headings
fontshape=plain fontsize=normalsize>

</style>

</stylesheet>

Note: Style attribute inheritance may be performed all at once, when the stylesheet is read. (But
see p. 28 for further discussion.) That is, browsers may “precompute” all the style specifications
inherited by each STYLE element up front, so the inheritance chain doesn’t need to be followed for
each document element as it’s being formatted.
Question: Should the INHERIT attribute allow multiple inheritance?
Note: Multiple inheritance is not currently specified. This could be implemented, but the benefits do
not seem worth the extra complexity to me.

November 18, 1994 Version 0.1

Style Sheets for HTML 25

5.3 Context-sensitive processing

So far, no good.
With the mechanisms defined so far, all the elements of a single type in a document share the same

style specifications. It is desirable to allow context-sensitive style specifications so, for example,
paragraphs inside block quotes can be formatted differently than paragraphs inside the main body.

Two alternate proposals are presented. The first is based on “style sets”, in which STYLE el-
ements are divided into groups; different groups may be active at different points in the document
processing based on context. The style set mechanism is strongly influenced by SGML’s “LINK”
feature.

The second is based on “context patterns”, in which the source document element hierarchy is
matched against a context pattern qualifier attribute on STYLE elements. The context pattern mech-
anism is partially influenced by the X11 resource database.
Note: The two mechanisms are mutually exclusive alternatives. While it would be possible to im-
plement both, it is probably better if one were chosen over the other.
Note: The context pattern mechanism seems more intuitive at first, but I feel that the style set mech-
anism would be much more powerful. Both seem about equally easy (or difficult) to implement.
Note: [9] uses something similar to style sets to specify context-sensitive style assignment: in that
proposal, a style specification may contain other specifications which are applicable only when the
outermost one is active. [10] uses something (vaguely) similar to the pattern mechanism, but turbo-
charged with an expression language.
Note: Both of these mechanisms would be much more useful if “section” or “division” elements
were added to HTML.

5.3.1 Style sets

This mechanism groups style elements into disjoint style sets. Any number of style sets may be ap-
plicable at a given point in the document.

The initial style set consists of all the STYLE elements contained directly in the top-level
STYLESHEET element. Other style sets are enclosed in STYLESET elements.

Each STYLESET element has a unique identifier, given by the ID attribute. STYLE elements
have an optional USESET attribute, which is treated (almost) like other style properties. The US-
ESET attribute names a style set which is to be activated for a source document element.

Browsers look for applicable STYLE elements in the currently active style set. If no applicable
style element is found, the previous style set is searched (i.e., the one that was active in the parent
element), and so on up the document hierarchy until the initial style set is reached.
[[This could be explained a lot better. The concept is really much simpler than it sounds!]]

For example, the following style sheet fragment specifies that EM and STRONG emphasis are
indicated by font-changes in most places, but that color should be used instead inside headings (pre-
sumably because headings are already set in boldface).

<stylesheet>

<colors>
<color id = red rgb = "#FF0000">
<color id = blue rgb = "#0000FF">
</colors>

November 18, 1994 Version 0.1

Style Sheets for HTML 26

<!-- base style for headings: -->
<style id=headings

USESET = INHEADING
fontfam = heading
fontshape = bf
align = right

></style>

<style gis="h1" inherit=headings fontsize=huge>
</style>
<style gis="h2" inherit=headings fontsize=large>
</style>
<style gis = "h3 h4" inherit=headings fontsize=normalsize>
</style>
<style gis = "h5 h6" inherit=headings fontsize=normalsize>
</style>

<!-- Default styles for EM and STRONG -->
<style gis="em" fontshape=it></style>
<style gis="strong" fontshape = bf></style>

<!-- when the INHEADING set is active,
different styles for EM and STRONG are used instead

-->
<styleset id=inheading>

<style gis="em" fgcolor=red></style>
<style gis="strong" fgcolor=blue></style>

</styleset>

</stylesheet>

Note: [9] allows context-sensitive style specifications by allowing style specifications to be nested.
This proposal uses a level of indirection – the USESET attribute and separately defined sets – so
that style sets may be easily reused. The resolution mechanisms seem to be similar in both cases,
i.e., if an applicable style rule cannot be found in the currently active set, the previous set should be
checked.
[[Add: POSTSET attribute, analagous to#POSTLINK. This willallowspecifications like “all para-
graphs after an <H3> ...”. This is something the pattern mechanism can’t easily handle.]]
[[How about <?USESET ...> processing instruction, analagous to <!USELINK ...> decla-
ration? Nah, probably not...]]

5.3.2 Context pattern matching

A perhaps more intuitive way of specifying context-sensitive style processing is to check the current
element hierarchy against a pattern. The pattern is specified in the CONTEXT qualifier attribute.

November 18, 1994 Version 0.1

Style Sheets for HTML 27

[[Need to check out FOSI e-i-cs, which seem similar.]]
The CONTEXT attribute is a list of generic identifiers which are matched (left to right) against

the document hierarchy (outermost element to innermost).
[[Should GIS and CONTEXT attributes be mutually exclusive, or could GIS be used (if present) as
the last component of the context pattern?]]

In a CONTEXT pattern, ? (question mark) may be used instead of a GI to match any single
element, and * (asterisk) matches a series of zero or more elements.

Context patterns implicitly begin with a *. To “anchor” a pattern to a specific depth, the pattern
may begin with HTML.
[[Need to fully describe the pattern-matching algorithm, since subtle differences in implementations
can lead to unexpected results (as I found out when we upgraded our system from X11R4 to X11R5!).
Suggest using the X11R5 rules since the R4 specification is vague.]]

Here is how the earlier example could be accomplished using patterns:

<stylesheet>

<colors>
<color id = red rgb = "#FF0000">
<color id = blue rgb = "#0000FF">
</colors>

<!-- styles for EM and STRONG inside headings:
Use colors instead of font changes for emphasis

-->

<style context = "em" fontshape=it></style>
<style context = "h1 * em" fgcolor=red></style>
<style context = "h2 * em" fgcolor=red></style>
<style context = "h3 * em" fgcolor=red></style>
<style context = "h4 * em" fgcolor=red></style>
<style context = "h5 * em" fgcolor=red></style>
<style context = "h6 * em" fgcolor=red></style>

<!-- this is getting old fast...
need to introduce more powerful patterns like:

-->
<style context = "strong" fontshape = bf></style>
<style

context = "(h1|h2|h3|h4|h5|h6) * strong"
fgcolor=blue>

</style>

</stylesheet>

Note: A CONTEXT pattern may end with a * or ?, as in <pattern context = "h1 *"
fontshape = bf fontfam=heading>. This may be used to augment the normal property
inheritance mechanism.

November 18, 1994 Version 0.1

Style Sheets for HTML 28

Question: What should happen if more than one style element matches? Use only the most-specific
match? Or use all matching specifications, with specifications in the most-specific match overriding
those in less-specific matches? The latter would be more useful, but a great deal more complex to
implement.
[[Need to explain “most-specific match” wrt. matching algorithm.]]

5.4 Specifying styles in the document

So far, still no good.
The most important reason for stylesheets is so authors can use presentation to convey informa-

tion. HTML does not have a rich enough tag set to identify all possible semantic information, and it
never can.
Note: But see [19] for one way arbitrary semantic information could be encoded without modifying
the base tag set. If a similar scheme is deployed for HTML, it will be supported by stylesheets.

This proposal suggests a change to HTML itself that allows authors to embed style information
in the document. The change is simple: Add an optional STYLE attribute to every HTML element.
This attribute is the ID of a STYLE element in the document’s style sheet.
Note: The HTML STYLE attribute must have a declared value of NAME, not IDREF, since
stylesheets are not part of the HTML document.
[[Example ATTLIST declaration here...]]
Note: Documents that use this mechanism will be tied to a specific stylesheet or class of stylesheets.

For example, this document contains many phrases that refer to SGML objects: elements, at-
tributes, and so forth. In HTML, they are all marked up as CODE elements, but it would be useful if
a different STYLE element could be specified for different types of objects; for example, elements
in the HTML DTD could be displayed in red and elements in the stylesheet DTD could be in blue:

<stylesheet>
<style id=html-elem fontshape=tt fgcolor=red>

<note>Style used for HTML elements</note>
</style>
<style id=ss-elem fontshape=tt fgcolor=blue>

<note>Style used for STYLESHEET elements</note>
</style>
<note>attributes are displayed just like elements</note>
<style id=html-att inherit = html-elem>
</style>
<style id=ss-att inherit=ss-elem>
</style>
<style gis = "code" fontshape=tt>
</style>
</stylesheet>

and in the document:

In HTML, they are all marked up
as <code style=html-elem>CODE</code> elements,
but it would be useful

November 18, 1994 Version 0.1

Style Sheets for HTML 29

if a different <code style=ss-elem>STYLE</code>
element were used for...

Note: A reader with a monochrome monitor (or a better sense of typographic design!) should be
able to hack the stylesheet to use different presentational effects to make this distinction. If a reader
wanted to distinguish between attributes and elements, that would also be possible just by modifying
the stylesheet, as long as the information is encoded in the document. This is, I feel, one of the biggest
advantages of logical markup over explicit formatting directives.
Note: Suggestion to browser implementors: Selecting an anchor (A element) with a rel=stylesheet
attritute specification could be interpreted as a request to redisplay the current document with the
referenced stylesheet. This would allow authors to prepare multiple “views” of a document, distin-
guished by stylesheets alone.

HTML equivalents

Some HTML elements already have attributes which indicate specific formatting properties, such as
COMPACT on DL (and ALIGN on various elements in HTML 3). Others imply formatting changes
by themselves, such as B and I, and Netscape’s FONT and CENTER. p. 39 gives a list of all such
elements and attributes, and the equivalent style properties.

When an explicit HTML formatting directive is encountered, the following resolution rules are
suggested:

� If the element’s start-tag also has a STYLE attribute, all “native” HTML style specifications
should be ignored.

� Otherwise, the HTML constructs shouldbe mapped to their equivalent stylesheet specification,
and these override specifications determined by the normal stylesheet mechanism.

Note: The rationale is that authors may wish to supply some specifications for browsers which are
not stylesheet-capable, while giving a more complete specification to those that are.
Question: If a STYLE attribute is present along with HTML formattingdirectives, should the HTML
directives be ignored, or should they be interpreted as an element-specific override?
Question: If HTML formatting directives are present with no STYLE attribute, should the regular
style processing take place or should it be bypasssed for the element in question?

5.5 Notes on style qualifiers

Inheritance

There are two separate inheritance hierarchies for style properties: in the document hierarchy, el-
ements inherit style properties from their parent element; and in the style sheet, STYLE elements
may inherit specifications from other STYLE elements through the INHERIT attribute.

There is an important distinction between style properties and style specifications. A property is
a parameter value maintained internally by the browser to make layout decisions, whereas a specifi-
cation is an attribute on a style element which modifies a property.

This distinction is very important when dealing with relative dimension specifications. For ex-
ample, take the following style sheet fragment:

November 18, 1994 Version 0.1

Style Sheets for HTML 30

<stylesheet>
<style id=s1

fontfam=alternate
lmargin="+3em"

>
</style>
<style id=s2 gis="blockquote"

inherit=s1
lmargin="+5em"

></style>
<style id=s3 gis="p" fontshape=plain>
</style>
</stylesheet>

Suppose the current left margin is 1em, and a BLOCKQUOTE element is encountered. The
applicable style element is s2, which inherits specifications from s1. The specification in s2 for
leftmargin overrides the specification in s1, so the left margin is indented by 5em, not 8em.

Conversely, suppose that a P element occurs inside the BLOCKQUOTE. The applicable
style element is s3, which does not have a specification for leftmargin, so the pararagraph
inherits the left margin property from the BLOCKQUOTE element: it does not inherit the
leftmargin="+5em" specification, so the left margin for the paragraph will be 6em (un-
changed), not 11em.

Also note that a STYLE element may specify properties for an element that are not directly ap-
plicable to the element itself. For example, a style for BLOCKQUOTE elements may specify a
bullet property, which is not used by the BLOCKQUOTE itself. The specification must be ap-
plied anyway, so that it may be inherited by LI elements inside ULs inside the BLOCKQUOTE.

6 Linking Stylesheets to the Document

Browsers should retrieve the stylesheet to use with an HTML document from one of the following
places, in order of precedence:

� A <LINK> element in the HEAD with a REL attribute of STYLESHEET (case-insensitive).
The HREF attribute is the URL of the stylesheet to use.

<!doctype HTML PUBLIC "-//IETF//DTD HTML//EN//2.0">
<head>
<link rel=stylesheet

href="http://www.foo.com/styles/default.ss">
<title>Some Document</title>
</head>

� If the document was retrieved via HTTP, from a Link: or WWW-Link: HTTP response
header with a rel=stylesheet qualifier.

WWW-Link: rel=stylesheet;
href="http://www.foo.com/styles/default"

November 18, 1994 Version 0.1

Style Sheets for HTML 31

Partial URLs should be interpreted relative to the document’s base URL.

� A default style sheet specified by the user (optional)

� A default style sheet for the browser

When style sheets are transmitted over HTTP, they should have a media type (MIME Content-
Type) of text/sgml.
[[Look into this: is there a dtd parameter?]]
Note: The other style sheet proposals all use the same mechanism for associating stylesheets with
documents. It will probably be necessary to specify what kind of stylesheet is being referred to. If
so, stylesheets defined by this proposal may be designated with a link relation of alfonso instead
of stylesheet. I expect no name-clashes here.

6.1 Multiple style sheets

This proposal assumes that no more than one style sheet is used for a document at any time. The
potential interactions between two or more independently written style specifications are highly un-
predictable.
Note: [10] attempts to deal with this issue; should look there for ideas.

The most oft-stated reason for wanting to combine style sheets, however, is so that users may
selectively override portions of external stylesheets. See the next section.

6.2 User preferences

Browsers are encouraged to provide users with the ability to configure the default style sheet. It is
also desirable if users may selectively override parts of an external stylesheet without discarding the
entire specification.

To accomplish this, style sheets may specify a weight for each attribute. The weight is an integer
from 1 to 3 for external stylesheets, and from 0 to 4 for user’s configurations. A different weight may
be specified for each style attribute. Stylesheet authors should assign weights to attributes based on
how important that particular attribute is:

1 - Incidental “This is just how I like to see it; go ahead and change it if you like.”

2 - Important style attribute is used to convey additional nonessential information. (“Corporate
identity” is in this category.)

3 - Critical This attribute is used to convey essential semantic information. (E.g., all element names
in blue, all attribute names in red.)

User preferences are specified in a stylesheet just like the document style sheet. Browsers process
both stylesheets in parallel, using the user’s specification for an attribute if it has a higher weight, and
the browser’s specification otherwise.
Note: If the preference sheet has assigned a higher weight than the stylesheet for an attribute, then
any specifications for that attribute in the stylesheet should be ignored even if there is none in the
preferences sheet. E.g., user assigns<weight prop=color value=4>, and stylesheet assigns
a color for an element, and the applicable style in the preferences file lists no color, then the color
should not be changed.

November 18, 1994 Version 0.1

Style Sheets for HTML 32

[[Give an example, and rewrite the last paragraph. It’s incomprehensible.]]
Note: Browsers may wish to restrict the user preference sheet to a simpler subset of the full stylesheet
language; e.g., no context-sensitive processing, no ID lookups.
Note: The valid range for weight values is intentionally small; this is to enhance predictability.

A SGML definitions

Listing 1: stylesheet.dtd
<!-- DTD for style specifications

10 Jul 1994
"-//ART.COM//DTD Style Sheet//EN//DRAFT"
$Id: stylesheet.dtd,v 1.4 1994/11/16 02:51:05 joe Exp $

-->

<!--
==
Parameters for attribute declared values
==

-->

<!entity % dimen "NUTOKEN" -- dimension -- >
<!entity % hdimen "%dimen;" -- horizontal dimension -->
<!entity % vdimen "%dimen;" -- vertical dimension -->
<!entity % rdimen "CDATA" -- relative dimension -->

<!entity % units -- informational only; %units; not used in DTD --
"... ednote: list units here "

>

<!--
dimen, hdimen, and vdimen are absolute dimensions.
Must be an integer followed by one of the "%units;" tokens.

rdimen attributes are relative if they begin with + or -,
absolute otherwise.

To specify negative absolute rdimen, prefix with =

Convention:
vertical dimensions are "xxxskip",
horizontal dimensions are "xxxspace".

-->

<!entity % color "IDREF" -- ID of COLOR element in stylesheet -->
<!entity % sepspec "IDREF" -- ID of SEPSPEC element in stylesheet -->

November 18, 1994 Version 0.1

Style Sheets for HTML 33

<!-- Fonts: -->

<!entity % fontfam
"normal
| heading
| alternate
| fixed

">

<!entity % fontsize
-- or: 0-7? --
"tiny
| small
| normalsize
| large
| big
| huge

">

<!entity % fontshape
"plain | bf | it | bi | tt | sc"

>

<!entity % halign "left | center | right" >
<!entity % valign "top | middle | bottom" >

<!-- special effects -->

<!entity % line "noline | underline | overline | strikethrough" >
<!entity % foldcase "nofoldcase | toupper | tolower" >

<!entity % box "box | nobox" >

<!-- Attribute declared value "notations" -->

<!entity % RGB "CDATA"
-- RGB values using X hex notation, #FF00FF -->

<!entity % URL "CDATA"
-- Uniform Resource Locator -->

<!-- Format attributes: -->

<!entity % headfmt "(display | runin | margin)" >
<!entity % numfmt "(arabic | lcroman | ucroman | lcalpha | ucalpha)" >

November 18, 1994 Version 0.1

Style Sheets for HTML 34

<!--
==
Attribute definition lists
==

-->

<!ENTITY % a.blkstyl -- Block-level style attributes --
"

fontfam (%fontfam;) #implied
lmargin %rdimen; #implied -- left margin --
rmargin %rdimen; #implied -- right margin --
preskip %vdimen; #implied
postskip %vdimen; #implied
presep %sepspec; #implied -- id of SEPSPEC element --
postsep %sepspec; #implied -- override {pre,post}skip --

box (%box;) nobox
boxcolor %color; #implied
bgcolor %color; #implied -- background color --

">
<!-- %%% Need: background tile image -->

<!ENTITY % a.chrstyl -- Character level style attributes --
"
fontsize (%fontsize;) #implied
fontshape (%fontshape;) #implied

fgcolor %color; #implied

-- special effects --
line (%line;) #implied
linecolor %color; #implied
foldcase (%foldcase;) #implied

">

<!ENTITY % a.hdgstyl -- Heading style attributes --
"

headfmt %headfmt; #IMPLIED
-- used inside lists --
icon IDREF #IMPLIED
numfmt %numfmt; #IMPLIED

">

<!ENTITY % a.parstyl -- Paragraph style attributes --
"

November 18, 1994 Version 0.1

Style Sheets for HTML 35

align (%halign;) #implied
xleading %vdimen; #implied -- extra leading --
parskip %vdimen; #implied -- space between paras --
parindent %hdimen; #implied -- initial indent --

obeylines (obeylines|wraplines) #implied
obeyspaces (obeyspaces|squeezespaces) #implied

">

<!--
==
Content models
==

-->

<!entity % decls "colors?" >
<!entity % specs "style | styleset | sepspec | image">

<!element stylesheet - - ((%decls;), (%specs;)*) +(note) >

<!element note - - (#PCDATA) >

<!element colors - - (color+) >
<!element color - O EMPTY >
<!attlist color

id ID #REQUIRED
rgb %RGB; #REQUIRED
-- others? --

>

<!element image - O EMPTY >
<!attlist image

id ID #IMPLIED
refid IDREF #IMPLIED -- ID of another image --
url %URL; #IMPLIED
reftype NAMES #FIXED "refid IMAGE"

>

<!element hrule - O EMPTY >
<!attlist hrule

width %hdimen; #IMPLIED
thick %dimen; #IMPLIED
align (%halign;) #IMPLIED

>

November 18, 1994 Version 0.1

Style Sheets for HTML 36

<!element vspace - O EMPTY >
<!attlist vspace

vskip %vdimen; #REQUIRED
>

<!element sepspec - - (hrule | vspace | image)*>
<!attlist sepspec

id ID #REQUIRED
>

<!-- Style elements: -->

<!element styleset - - (style+) >
<!attlist styleset

id ID #REQUIRED
inherit IDREF #IMPLIED
reftype NAMES #FIXED "inherit styleset"

>

<!element style - O ANY
-- ??? what should the content model be? --

>
<!attlist style

id ID #IMPLIED
inherit IDREF #IMPLIED -- STYLE --
useset IDREF #IMPLIED -- STYLESET --
postset IDREF #IMPLIED -- STYLESET --

-- Qualifiers: --
gis NAMES #IMPLIED
context CDATA #IMPLIED

-- Specifiers: --
%a.blkstyl;
%a.chrstyl;
%a.parstyl;
%a.hdgstyl;

reftype NAMES #FIXED "inherit style
icon image
useset styleset
postset styleset
presep sepspec
postsep sepspec
bgcolor color
fgcolor color

November 18, 1994 Version 0.1

Style Sheets for HTML 37

boxcolor color
linecolor color"

>

B Sample stylesheet for HTML

Heree is a more comprehensive stylesheet exampe, corresponding to the recommended renderings
in the HTML specification.

Listing 2: sample.ss

<!doctype stylesheet SYSTEM>

<!--
Sample stylesheet for "typical" HTML rendering
$Id: sample.ss,v 1.2 1994/11/19 02:15:50 joe Exp $

-->
<stylesheet>

<!--
Overall style for document:
Specify small left and right marggins.

-->

<style gis = "body"
lmargin = "5pcd"
rmargin = "5pcd"

>

<!-- Styles for headings: -->

<note>
These are taken from the June 1993 HTML draft,
not what any browser actually does.
Need to update it forthe 2.0 version.
</note>

<style id = headings
fontfam = heading
fontshape = bf
headfmt = display
preskip = 1nlh
postskip = 1nlh

November 18, 1994 Version 0.1

Style Sheets for HTML 38

lmargin = 0pcd
align = left

></style>
<style gis = "h1"

inherit = headings
fontsize = huge
preskip = 2nlh
align = center

></style>
<style gis = "h2"

inherit = headings
fontsize = big

></style>
<style gis = "h3"

inherit = headings
fontsize = large
fontshape = it

></style>
<style gis = "h4"

inherit = headings
fontsize = normalsize
fontshape = bf
lmargin = 2pcd

></style>
<style gis = "h5"

inherit = headings
fontsize = normalsize
fontshape = it
lmargin = 2pcd

></style>
<style gis = "h6"

inherit = headings
fontsize = normalsize
fontshape = it
lmargin = 5pcd

></style>

<note>
Need to fill the rest in...
</note>

<!-- blocks -->
<style gis = "address"
></style>

<style gis = "blockquote"

November 18, 1994 Version 0.1

Style Sheets for HTML 39

></style>

<!-- containers -->
<style gis = "body"
></style>
<style gis = "form"
></style>
<style gis = "head"
></style>
<style gis = "html"
></style>

<!-- block displays -->
<style gis = "select"
></style>
<style gis = "option"
></style>
<style gis = "pre"
></style>
<style gis = "textarea"
></style>

<!-- inline displays -->

<style gis = "input"
></style>
<style gis = "image"
></style>

<!-- Lists -->
<style gis = "dt"
></style>
<style gis = "dd"
></style>
<style gis = "li"
></style>
<style gis = "menu"
></style>
<style gis = "dir"
></style>
<style gis = "dl"
></style>
<style gis = "ol"
></style>
<style gis = "ul"

November 18, 1994 Version 0.1

Style Sheets for HTML 40

></style>

<!-- Paragrapphs -->
<style gis = "p"
></style>

<!-- Phrases -->
<style gis = "a"
></style>
<style gis = "b"
></style>
<style gis = "cite"
></style>
<style gis = "code"
></style>
<style gis = "em"
></style>
<style gis = "i"
></style>
<style gis = "kbd"
></style>
<style gis = "samp"
></style>
<style gis = "strong"
></style>
<style gis = "tt"
></style>
<style gis = "var"
></style>

<!-- Sepearators -->
<style gis = "br"
></style>
<style gis = "hr"
></style>

</stylesheet>

C HTML equivalents of style properties

Not yet written. Needs more research.

November 18, 1994 Version 0.1

Style Sheets for HTML 41

D WWW-Arch architectural form definition

Listing 3: wwwarch.dtd
<!-- wwwarch.dtd

Author: Joe English
Created: 7 Nov 1994
$Date: 1994/11/19 02:15:50 $

-->

<!entity % phrase "phrase"
-- all phrase-level elements -->

<!entity % para "para"
-- all paragraph-level elements -->

<!entity % block "block"
-- all block-level elements -->

<!entity % heading "heading"
-- all heading-like elements -->

<!entity % metainfo "metainfo"
-- all metainformation elements -->

<!-- entity declarations for content models: -->

<!entity % body.content "(%heading; | %block; | %para;)*" >
<!entity % block.content "(%block; | %para)*" >
<!entity % para.content "(%phrase; | #PCDATA)*" >
<!entity % phrase.content "(%phrase; | #PCDATA)*" >

<!element wwwarch - - (head,body)>
<!element head - - (%metainfo;)* >

<!element body - - (%body.content;)*>

<!element (%block;) - - %block.content;>
<!element (%para;) - - %para.content;>
<!element (%phrase;) - - %phrase.content;>
<!element (%heading;) - - %phrase.content;>

<!element list - - (item+) -- single-part list -->
<!element dlist - - (dlentry+) -- two-part list -->
<!element dlentry O O (heading*, item*)>
<!element item - - (%text.content; | (%para;)+)>

<!-- this will probably be more useful when it’s finished...
-->

November 18, 1994 Version 0.1

Style Sheets for HTML 42

References

[1] A "clearinghouse" document at CERN with references all the major extant stylesheet proposals.
<URL:http://info.cern.ch/hypertext/WWW/Style/>

[2] Gavin Nicol <gtn@ebt.com> is collecting a set of requirements for stylesheets.

[3] C. M. Sperberg-McQueen <cmsmcq@uic.edu> has put together a list of simple formatting
primitives.
<URL:http://tigger.cc.uic.edu/~cmsmcq/style-primitives.html>

[4] The HTTP protocol documents at CERN.
<URL:http://info.cern.ch/hypertext/WWW/Protocols/HTTP/>

[5] The HTML 2.0 draft standard.
<URL:http://www.hal.com/~connolly/html-spec/index.html>

[6] The HTML SGML declaration.
<URL:html.decl>

[7] The www-talk mailing list hypermail archives.
<URL:http://gummo.stanford.edu/html/hypermail/>

[8] Rob Raisch’s stylesheet proposal, posted to www-talk.
<URL:.www-talk-1993q2.messages/443.html>

[9] Pei Wei’s stylesheet RFC, used in Viola.
<URL:http://pebble.berkeley.ora.com/vdoc/style/stylesheetRFC.txt>

[10] Cascading Stylesheets, Håkon W Lie.
<URL:http://info.cern.ch/hypertext/WWW/People/howcome/p/cascade.html>

[11] SoftQuad’s stylesheet mechanism; soon to be released.

[[Will probably make this proposal totally pointless.]]

<URL:http://www.sq.com/>

[12] Steve Pepper <pepper@falch.no> is conducting an investigation into the possibilityof us-
ing a small subset of DSSSL (the Document Style Semantics and Specification Language) as the
basis for a standard style language for HTML and other SGML applications.

[[Will definitely make this proposal pointless if SoftQuad’s stylesheets don’t.]]

<URL:http://www.falch.no/~pepper/DSSSL-Lite/>

[13] A proposal by Jon Bosak <Jon_Bosak@Novell.COM> for the development and deploy-
ment of HDL, a new document format based on SDL.
<URL:ftp://ftp.ora.com/pub/davenport/HDL/hdl.proposal.html>

[14] Questions and answers about HDL.
<URL:ftp://ftp.ora.com/pub/davenport/HDL/hdl.q-and-a.html>

November 18, 1994 Version 0.1

Style Sheets for HTML 43

[15] Information about SDL, the Semantic Delivery Language.
<URL:ftp://ftp.ora.com/pub/davenport/SDL>

[16] Netscape’s enhancements to HTML.
<URL:http://home.mcom.com/home/services_docs/html-extensions.html>

[17] The only information I have on DSSSL at present. Erik Naggum has promised a review...
<URL:http://www.art.com/~joe/dsssl.txt>

[18] Proposal for a DIVISION element in HTML. Not yet written; see www-talk archives for the
initial proposal.

[19] Wayne Wohler’s article in comp.text.sgml describing user-defined logical markup in IBMID-
Doc. (Sorry, no URL; www-html archives seem to be down).

November 18, 1994 Version 0.1

